Edexcel FP1 Specimen — Question 8

Exam BoardEdexcel
ModuleFP1 (Further Pure Mathematics 1)
SessionSpecimen
TopicHarmonic Form

8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a52911da-4b69-4d86-975e-d10e3a481e1d-16_407_1100_201_484} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the graph of the function \(\mathrm { h } ( x )\) with equation $$h ( x ) = 45 + 15 \sin x + 21 \sin \left( \frac { x } { 2 } \right) + 25 \cos \left( \frac { x } { 2 } \right) \quad x \in [ 0,40 ]$$
  1. Show that $$\frac { \mathrm { d } h } { \mathrm {~d} x } = \frac { \left( t ^ { 2 } - 6 t - 17 \right) \left( 9 t ^ { 2 } + 4 t - 3 \right) } { 2 \left( 1 + t ^ { 2 } \right) ^ { 2 } }$$ where \(t = \tan \left( \frac { x } { 4 } \right)\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{a52911da-4b69-4d86-975e-d10e3a481e1d-16_581_1403_1263_331} \captionsetup{labelformat=empty} \caption{Figure 2}
    \end{figure} Source: \({ } ^ { 1 }\) Data taken on 29th December 2016 from \href{http://www.ukho.gov.uk/easytide/EasyTide}{http://www.ukho.gov.uk/easytide/EasyTide} Figure 2 shows a graph of predicted tide heights, in metres, for Portland harbour from 08:00 on the 3rd January 2017 to the end of the 4th January \(2017 { } ^ { 1 }\). The graph of \(k \mathrm {~h} ( x )\), where \(k\) is a constant and \(x\) is the number of hours after 08:00 on 3rd of January, can be used to model the predicted tide heights, in metres, for this period of time.
    1. Suggest a value of \(k\) that could be used for the graph of \(k \mathrm {~h} ( x )\) to form a suitable model.
    2. Why may such a model be suitable to predict the times when the tide heights are at their peaks, but not to predict the heights of these peaks?
  2. Use Figure 2 and the result of part (a) to estimate, to the nearest minute, the time of the highest tide height on the 4th January 2017.