Edexcel FP1 (Further Pure Mathematics 1) Specimen

Question 1
View details
  1. Use Simpson's Rule with 6 intervals to estimate
$$\int _ { 1 } ^ { 4 } \sqrt { 1 + x ^ { 3 } } d x$$
Question 2
View details
  1. Given \(k\) is a constant and that
$$y = x ^ { 3 } \mathrm { e } ^ { k x }$$ use Leibnitz theorem to show that $$\frac { \mathrm { d } ^ { n } y } { \mathrm {~d} x ^ { n } } = k ^ { n - 3 } \mathrm { e } ^ { k x } \left( k ^ { 3 } x ^ { 3 } + 3 n k ^ { 2 } x ^ { 2 } + 3 n ( n - 1 ) k x + n ( n - 1 ) ( n - 2 ) \right)$$
Question 3
View details
  1. A vibrating spring, fixed at one end, has an external force acting on it such that the centre of the spring moves in a straight line. At time \(t\) seconds, \(t \geqslant 0\), the displacement of the centre \(C\) of the spring from a fixed point \(O\) is \(x\) micrometres.
The displacement of \(C\) from \(O\) is modelled by the differential equation $$t ^ { 2 } \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } - 2 t \frac { \mathrm {~d} x } { \mathrm {~d} t } + \left( 2 + t ^ { 2 } \right) x = t ^ { 4 }$$
  1. Show that the transformation \(x = t v\) transforms equation (I) into the equation $$\frac { \mathrm { d } ^ { 2 } v } { \mathrm {~d} t ^ { 2 } } + v = t$$
  2. Hence find the general equation for the displacement of \(C\) from \(O\) at time \(t\) seconds.
    1. State what happens to the displacement of \(C\) from \(O\) as \(t\) becomes large.
    2. Comment on the model with reference to this long term behaviour.
Question 4
View details
4. $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = 0$$
  1. Show that $$\frac { \mathrm { d } ^ { 5 } y } { \mathrm {~d} x ^ { 5 } } = a x \frac { \mathrm {~d} ^ { 4 } y } { \mathrm {~d} x ^ { 4 } } + b \frac { \mathrm {~d} ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }$$ where \(a\) and \(b\) are integers to be found.
  2. Hence find a series solution, in ascending powers of \(x\), as far as the term in \(x ^ { 5 }\), of the differential equation (I) where \(y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\) at \(x = 0\)
Question 5
View details
  1. The normal to the parabola \(y ^ { 2 } = 4 a x\) at the point \(P \left( a p ^ { 2 } , 2 a p \right)\) passes through the parabola again at the point \(Q \left( a q ^ { 2 } , 2 a q \right)\).
The line \(O P\) is perpendicular to the line \(O Q\), where \(O\) is the origin.
Prove that \(p ^ { 2 } = 2\)
Question 6
View details
  1. A tetrahedron has vertices \(A ( 1,2,1 ) , B ( 0,1,0 ) , C ( 2,1,3 )\) and \(D ( 10,5,5 )\).
Find
  1. a Cartesian equation of the plane \(A B C\).
  2. the volume of the tetrahedron \(A B C D\). The plane \(\Pi\) has equation \(2 x - 3 y + 3 = 0\)
    The point \(E\) lies on the line \(A C\) and the point \(F\) lies on the line \(A D\).
    Given that \(\Pi\) contains the point \(B\), the point \(E\) and the point \(F\),
  3. find the value of \(k\) such that \(\overrightarrow { A E } = k \overrightarrow { A C }\). Given that \(\overrightarrow { A F } = \frac { 1 } { 9 } \overrightarrow { A D }\)
  4. show that the volume of the tetrahedron \(A B C D\) is 45 times the volume of the tetrahedron \(A B E F\).
Question 7
View details
  1. \(P\) and \(Q\) are two distinct points on the ellipse described by the equation \(x ^ { 2 } + 4 y ^ { 2 } = 4\)
The line \(l\) passes through the point \(P\) and the point \(Q\).
The tangent to the ellipse at \(P\) and the tangent to the ellipse at \(Q\) intersect at the point \(( r , s )\).
Show that an equation of the line \(l\) is $$4 s y + r x = 4$$
Question 8
View details
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a52911da-4b69-4d86-975e-d10e3a481e1d-16_407_1100_201_484} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the graph of the function \(\mathrm { h } ( x )\) with equation $$h ( x ) = 45 + 15 \sin x + 21 \sin \left( \frac { x } { 2 } \right) + 25 \cos \left( \frac { x } { 2 } \right) \quad x \in [ 0,40 ]$$
  1. Show that $$\frac { \mathrm { d } h } { \mathrm {~d} x } = \frac { \left( t ^ { 2 } - 6 t - 17 \right) \left( 9 t ^ { 2 } + 4 t - 3 \right) } { 2 \left( 1 + t ^ { 2 } \right) ^ { 2 } }$$ where \(t = \tan \left( \frac { x } { 4 } \right)\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{a52911da-4b69-4d86-975e-d10e3a481e1d-16_581_1403_1263_331} \captionsetup{labelformat=empty} \caption{Figure 2}
    \end{figure} Source: \({ } ^ { 1 }\) Data taken on 29th December 2016 from \href{http://www.ukho.gov.uk/easytide/EasyTide}{http://www.ukho.gov.uk/easytide/EasyTide} Figure 2 shows a graph of predicted tide heights, in metres, for Portland harbour from 08:00 on the 3rd January 2017 to the end of the 4th January \(2017 { } ^ { 1 }\). The graph of \(k \mathrm {~h} ( x )\), where \(k\) is a constant and \(x\) is the number of hours after 08:00 on 3rd of January, can be used to model the predicted tide heights, in metres, for this period of time.
    1. Suggest a value of \(k\) that could be used for the graph of \(k \mathrm {~h} ( x )\) to form a suitable model.
    2. Why may such a model be suitable to predict the times when the tide heights are at their peaks, but not to predict the heights of these peaks?
  2. Use Figure 2 and the result of part (a) to estimate, to the nearest minute, the time of the highest tide height on the 4th January 2017.