- Given \(k\) is a constant and that
$$y = x ^ { 3 } \mathrm { e } ^ { k x }$$
use Leibnitz theorem to show that
$$\frac { \mathrm { d } ^ { n } y } { \mathrm {~d} x ^ { n } } = k ^ { n - 3 } \mathrm { e } ^ { k x } \left( k ^ { 3 } x ^ { 3 } + 3 n k ^ { 2 } x ^ { 2 } + 3 n ( n - 1 ) k x + n ( n - 1 ) ( n - 2 ) \right)$$