Edexcel FP1 2024 June — Question 5

Exam BoardEdexcel
ModuleFP1 (Further Pure Mathematics 1)
Year2024
SessionJune
TopicReduction Formulae

5. $$y = \mathrm { e } ^ { 3 x } \sin x$$
  1. Use Leibnitz's theorem to show that $$\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } } = 28 \mathrm { e } ^ { 3 x } \sin x + 96 \mathrm { e } ^ { 3 x } \cos x$$
  2. Hence express \(\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } }\) in the form $$\operatorname { Re } ^ { 3 \mathrm { x } } \sin ( \mathrm { x } + \alpha )$$ where \(R\) and \(\alpha\) are constants to be determined, \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\)