Edexcel FP1 2024 June — Question 8

Exam BoardEdexcel
ModuleFP1 (Further Pure Mathematics 1)
Year2024
SessionJune
TopicConic sections

  1. The parabola \(P\) has equation \(y ^ { 2 } = 4 a x\), where \(a\) is a positive constant.
The point \(A \left( a t ^ { 2 } , 2 a t \right)\), where \(t \neq 0\), lies on \(P\).
  1. Use calculus to show that an equation of the tangent to \(P\) at \(A\) is $$y t = x + a t ^ { 2 }$$ The point \(B \left( 2 k ^ { 2 } , 4 k \right)\) and the point \(C \left( 2 k ^ { 2 } , - 4 k \right)\), where \(k\) is a constant, lie on \(P\).
    The tangent to \(P\) at \(B\) and the tangent to \(P\) at \(C\) intersect at the point \(D\).
    Given that the area of the triangle \(B C D\) is 432
  2. determine the coordinates of \(B\) and the coordinates of \(C\).