Edexcel FP1 (Further Pure Mathematics 1) 2024 June

Question 1
View details
  1. (a) Given that
$$y = \ln \left( 3 + x ^ { 2 } \right)$$ complete the table with the value of \(y\) corresponding to \(x = 3\), giving your answer to 4 significant figures.
\(\boldsymbol { x }\)22.533.544.55
\(\boldsymbol { y }\)1.9462.2252.7252.9443.1463.332
In part (b) you must show all stages of your working. \section*{Solutions relying entirely on calculator technology are not acceptable.} (b) Use Simpson's rule with all the values of \(y\) in the completed table to estimate, to 3 significant figures, the value of $$\int _ { 2 } ^ { 5 } \ln \left( 3 + x ^ { 2 } \right) \mathrm { d } x$$ (c) Using your answer to part (b) and making your method clear, estimate the value of $$\int _ { 2 } ^ { 5 } \ln \sqrt { \left( 3 + x ^ { 2 } \right) } \mathrm { d } x$$
Question 2
View details
  1. Use algebra to determine the values of \(x\) for which
$$\left| x ^ { 2 } - 2 x \right| \leqslant x$$
Question 3
View details
  1. Use L'Hospital's rule to show that
$$\lim _ { x \rightarrow 0 } \left( \frac { 1 } { \sin x } - \frac { 1 } { x } \right) = 0$$ (6)
Question 4
View details
4. $$\left[ \begin{array} { l } \text { The Taylor series expansion of } \mathrm { f } ( x ) \text { about } x = a \text { is given by }
\mathrm { f } ( x ) = \mathrm { f } ( a ) + ( x - a ) \mathrm { f } ^ { \prime } ( a ) + \frac { ( x - a ) ^ { 2 } } { 2 ! } \mathrm { f } ^ { \prime \prime } ( a ) + \ldots + \frac { ( x - a ) ^ { r } } { r ! } \mathrm { f } ^ { ( r ) } ( a ) + \ldots \end{array} \right]$$ The curve with equation \(y = \mathrm { f } ( x )\) satisfies the differential equation $$\cos x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + y ^ { 2 } \frac { \mathrm {~d} y } { \mathrm {~d} x } + \sin x = 0$$ Given that \(\left( \frac { \pi } { 4 } , 1 \right)\) is a stationary point of the curve,
  1. determine the nature of this stationary point, giving a reason for your answer.
  2. Show that \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } } = \sqrt { 2 } - 2\) at this stationary point.
  3. Hence determine a series solution for \(y\), in ascending powers of \(\left( x - \frac { \pi } { 4 } \right)\) up to and including the term in \(\left( x - \frac { \pi } { 4 } \right) ^ { 3 }\), giving each coefficient in simplest form.
Question 5
View details
5. $$y = \mathrm { e } ^ { 3 x } \sin x$$
  1. Use Leibnitz's theorem to show that $$\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } } = 28 \mathrm { e } ^ { 3 x } \sin x + 96 \mathrm { e } ^ { 3 x } \cos x$$
  2. Hence express \(\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } }\) in the form $$\operatorname { Re } ^ { 3 \mathrm { x } } \sin ( \mathrm { x } + \alpha )$$ where \(R\) and \(\alpha\) are constants to be determined, \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\)
Question 6
View details
  1. The ellipse \(E\) has equation
$$\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1$$ The hyperbola \(H\) has equation $$\frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1$$ where \(a\) and \(b\) are positive constants.
Given that
  • the eccentricity of \(H\) is the reciprocal of the eccentricity of \(E\)
  • the coordinates of the foci of \(H\) are the same as the coordinates of the foci of \(E\) determine
    1. the value of \(a\)
    2. the value of \(b\)
Question 7
View details
  1. In this question you must show all stages of your working.
\section*{Solutions relying on calculator technology are not acceptable.}
  1. Use the substitution \(t = \tan \left( \frac { \theta } { 2 } \right)\) to show that $$\int \frac { 1 } { 2 \sin \theta + \cos \theta + 2 } d \theta = \int \frac { a } { ( t + b ) ^ { 2 } + c } d t$$ where \(a\), \(b\) and \(c\) are constants to be determined.
  2. Hence show that $$\int _ { \frac { \pi } { 2 } } ^ { \frac { 2 \pi } { 3 } } \frac { 1 } { 2 \sin \theta + \cos \theta + 2 } d \theta = \ln \left( \frac { 2 \sqrt { 3 } } { 3 } \right)$$
Question 8
View details
  1. The parabola \(P\) has equation \(y ^ { 2 } = 4 a x\), where \(a\) is a positive constant.
The point \(A \left( a t ^ { 2 } , 2 a t \right)\), where \(t \neq 0\), lies on \(P\).
  1. Use calculus to show that an equation of the tangent to \(P\) at \(A\) is $$y t = x + a t ^ { 2 }$$ The point \(B \left( 2 k ^ { 2 } , 4 k \right)\) and the point \(C \left( 2 k ^ { 2 } , - 4 k \right)\), where \(k\) is a constant, lie on \(P\).
    The tangent to \(P\) at \(B\) and the tangent to \(P\) at \(C\) intersect at the point \(D\).
    Given that the area of the triangle \(B C D\) is 432
  2. determine the coordinates of \(B\) and the coordinates of \(C\).
Question 9
View details
    1. The line \(l _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 2
      - 3
      1 \end{array} \right) + \lambda \left( \begin{array} { r } 3
      4
      - 1 \end{array} \right)\)
The line \(l _ { 2 }\) has equation \(\mathbf { r } = \left( \begin{array} { c } 13
5
8 \end{array} \right) + \mu \left( \begin{array} { r } 1
- 2
5 \end{array} \right)\)
where \(\lambda\) and \(\mu\) are scalar parameters.
The lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect at the point \(P\).
  1. Determine the coordinates of \(P\). Given that the plane \(\Pi\) contains both \(l _ { 1 }\) and \(l _ { 2 }\)
  2. determine a Cartesian equation for \(\Pi\).
    (ii) Determine a Cartesian equation for each of the two lines that
    • pass through \(( 0,0,0 )\)
    • make an angle of \(60 ^ { \circ }\) with the \(x\)-axis
    • make an angle of \(45 ^ { \circ }\) with the \(y\)-axis
Question 10
View details
  1. The motion of a particle \(P\) along the \(x\)-axis is modelled by the differential equation
$$t ^ { 2 } \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } - 2 t ( t + 1 ) \frac { \mathrm { d } x } { \mathrm {~d} t } + 2 ( t + 1 ) x = 8 t ^ { 3 } \mathrm { e } ^ { t }$$ where \(P\) has displacement \(x\) metres from the origin \(O\) at time \(t\) minutes, \(t > 0\)
  1. Show that the transformation \(x = t u\) transforms the differential equation (I) into the differential equation $$\frac { \mathrm { d } ^ { 2 } u } { \mathrm {~d} t ^ { 2 } } - 2 \frac { \mathrm {~d} u } { \mathrm {~d} t } = 8 \mathrm { e } ^ { t }$$ Given that \(P\) is at \(O\) when \(t = \ln 3\) and when \(t = \ln 5\)
  2. determine the particular solution of the differential equation (I)