Edexcel CP2 2019 June — Question 5

Exam BoardEdexcel
ModuleCP2 (Core Pure 2)
Year2019
SessionJune
TopicSecond order differential equations

  1. An engineer is investigating the motion of a sprung diving board at a swimming pool.
Let \(E\) be the position of the end of the diving board when it is at rest in its equilibrium position and when there is no diver standing on the diving board.
A diver jumps from the diving board.
The vertical displacement, \(h \mathrm {~cm}\), of the end of the diving board above \(E\) is modelled by the differential equation $$4 \frac { \mathrm {~d} ^ { 2 } h } { \mathrm {~d} t ^ { 2 } } + 4 \frac { \mathrm {~d} h } { \mathrm {~d} t } + 37 h = 0$$ where \(t\) seconds is the time after the diver jumps.
  1. Find a general solution of the differential equation. When \(t = 0\), the end of the diving board is 20 cm below \(E\) and is moving upwards with a speed of \(55 \mathrm {~cm} \mathrm {~s} ^ { - 1 }\).
  2. Find, according to the model, the maximum vertical displacement of the end of the diving board above \(E\).
  3. Comment on the suitability of the model for large values of \(t\).