Edexcel CP2 2019 June — Question 3

Exam BoardEdexcel
ModuleCP2 (Core Pure 2)
Year2019
SessionJune
TopicIntegration using inverse trig and hyperbolic functions

3. $$f ( x ) = \frac { 1 } { \sqrt { 4 x ^ { 2 } + 9 } }$$
  1. Using a substitution, that should be stated clearly, show that $$\int \mathrm { f } ( x ) \mathrm { d } x = A \sinh ^ { - 1 } ( B x ) + c$$ where \(c\) is an arbitrary constant and \(A\) and \(B\) are constants to be found.
  2. Hence find, in exact form in terms of natural logarithms, the mean value of \(\mathrm { f } ( x )\) over the interval \([ 0,3 ]\).