Edexcel FS2 AS 2020 June — Question 3

Exam BoardEdexcel
ModuleFS2 AS (Further Statistics 2 AS)
Year2020
SessionJune
TopicCumulative distribution functions
TypeCDF with additional constraints

  1. The continuous random variable \(X\) has cumulative distribution function
$$\mathrm { F } ( x ) = \left\{ \begin{array} { c c } 0 & x < 4
p x - k \sqrt { x } & 4 \leqslant x \leqslant 9
1 & x > 9 \end{array} \right.$$ where \(p\) and \(k\) are constants.
  1. Find the value of \(p\) and the value of \(k\). Given that \(\mathrm { E } ( X ) = \frac { 119 } { 18 }\)
  2. show that \(\operatorname { Var } ( X ) = 2.05\) to 3 significant figures.
  3. Write down the mode of \(X\).
  4. Find the exact value of the constant \(a\) such that \(\mathrm { P } ( X \leqslant a ) = \frac { 7 } { 27 }\)