CDF with additional constraints

Given a CDF with unknown constants plus an additional constraint (such as given mean, variance, mode, median, or percentile value), use both the CDF properties and the extra constraint to solve for constants.

8 questions

Edexcel S2 2023 January Q6
  1. The continuous random variable \(X\) has cumulative distribution function
$$\mathrm { F } ( x ) = \left\{ \begin{array} { l r } 0 & x < 0
a x + b x ^ { 2 } & 0 \leqslant x \leqslant k
1 & x > k \end{array} \right.$$ where \(a , b\) and \(k\) are positive constants.
  1. Show that \(a k = 1 - b k ^ { 2 }\) Using part (a) and given that \(\mathrm { E } ( X ) = \frac { 6 } { 5 }\)
  2. show that \(5 b k ^ { 3 } = 36 - 15 k\) Using part (a) and given that \(\mathrm { E } ( X ) = \frac { 6 } { 5 }\) and \(\operatorname { Var } ( X ) = \frac { 22 } { 75 }\)
  3. show that \(5 b k ^ { 4 } = 52 - 10 k ^ { 2 }\) Given that \(k < 3\)
  4. find the value of \(k\)
  5. Hence find the value of \(a\) and the value of \(b\)
Edexcel S2 2024 January Q7
  1. A continuous random variable \(X\) has cumulative distribution function \(\mathrm { F } ( x )\) given by
$$\mathrm { F } ( x ) = \left\{ \begin{array} { c c } 0 & x < 1
k \left( a x + b x ^ { 3 } - x ^ { 4 } - 4 \right) & 1 \leqslant x \leqslant 2
1 & x > 2 \end{array} \right.$$ where \(a\), \(b\) and \(k\) are non-zero constants.
Given that the mode of \(X\) is 1.5
  1. show that \(b = 3\)
  2. Hence show that \(a = 2\)
  3. Show that the median of \(X\) lies between 1.4 and 1.5
Edexcel S2 2018 October Q5
5. The random variable \(X\) has cumulative distribution function given by $$F ( x ) = \left\{ \begin{array} { l r } 0 & x < 0
\frac { 1 } { 100 } \left( a x ^ { 3 } + b x ^ { 2 } + 15 x \right) & 0 \leqslant x \leqslant 5
1 & x > 5 \end{array} \right.$$ Given that \(\mathrm { E } \left( X ^ { 2 } \right) = 6.25\)
  1. show that \(6 a + b = 0\)
  2. find the value of \(a\) and the value of \(b\)
  3. find \(\mathrm { P } ( 3 \leqslant X \leqslant 7 )\)
Edexcel S2 2016 June Q4
4. A continuous random variable \(X\) has cumulative distribution function \(\mathrm { F } ( x )\) given by $$\mathrm { F } ( x ) = \left\{ \begin{array} { c c } 0 & x < 2
k \left( a x + b x ^ { 2 } - x ^ { 3 } \right) & 2 \leqslant x \leqslant 3
1 & x > 3 \end{array} \right.$$ Given that the mode of \(X\) is \(\frac { 8 } { 3 }\)
  1. show that \(b = 8\)
  2. find the value of \(k\).
Edexcel FS2 AS 2020 June Q3
  1. The continuous random variable \(X\) has cumulative distribution function
$$\mathrm { F } ( x ) = \left\{ \begin{array} { c c } 0 & x < 4
p x - k \sqrt { x } & 4 \leqslant x \leqslant 9
1 & x > 9 \end{array} \right.$$ where \(p\) and \(k\) are constants.
  1. Find the value of \(p\) and the value of \(k\). Given that \(\mathrm { E } ( X ) = \frac { 119 } { 18 }\)
  2. show that \(\operatorname { Var } ( X ) = 2.05\) to 3 significant figures.
  3. Write down the mode of \(X\).
  4. Find the exact value of the constant \(a\) such that \(\mathrm { P } ( X \leqslant a ) = \frac { 7 } { 27 }\)
Edexcel FS2 2019 June Q4
4 The continuous random variable \(X\) has cumulative distribution function given by $$\mathrm { F } ( x ) = \left\{ \begin{array} { c c } 0 & x \leqslant 0
k \left( x ^ { 3 } - \frac { 3 } { 8 } x ^ { 4 } \right) & 0 < x \leqslant 2
1 & x > 2 \end{array} \right.$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 1 } { 2 }\)
  2. Showing your working clearly, use calculus to find
    1. \(\mathrm { E } ( X )\)
    2. the mode of \(X\)
  3. Describe, giving a reason, the skewness of the distribution of \(X\)
Edexcel FS2 2023 June Q6
  1. The continuous random variable \(X\) has cumulative distribution function given by
$$F ( x ) = \left\{ \begin{array} { c r } 0 & x < 0
k \left( x - a x ^ { 2 } \right) & 0 \leqslant x \leqslant 4
1 & x > 4 \end{array} \right.$$ The values of \(a\) and \(k\) are positive constants such that \(\mathrm { P } ( X < 2 ) = \frac { 2 } { 3 }\)
  1. Find the exact value of the median of \(X\)
  2. Find the probability density function of \(X\)
  3. Hence, deduce the value of the mode of \(X\), giving a reason for your answer.
Edexcel FS2 2024 June Q5
  1. A continuous random variable \(X\) has probability density function
$$f ( x ) = \left\{ \begin{array} { c l } a x ^ { - 2 } - b x ^ { - 3 } & 2 \leqslant x < \infty
0 & \text { otherwise } \end{array} \right.$$ where \(a\) and \(b\) are constants. Given that \(\mathrm { P } ( X \leqslant 4 ) = \frac { 3 } { 8 }\)
  1. use algebraic integration to show that \(a = 3\) Show your working clearly.
  2. Find the exact value of the median of \(X\)