- The continuous random variable \(X\) has cumulative distribution function
$$\mathrm { F } ( x ) = \left\{ \begin{array} { c c }
0 & x < 4
p x - k \sqrt { x } & 4 \leqslant x \leqslant 9
1 & x > 9
\end{array} \right.$$
where \(p\) and \(k\) are constants.
- Find the value of \(p\) and the value of \(k\).
Given that \(\mathrm { E } ( X ) = \frac { 119 } { 18 }\)
- show that \(\operatorname { Var } ( X ) = 2.05\) to 3 significant figures.
- Write down the mode of \(X\).
- Find the exact value of the constant \(a\) such that \(\mathrm { P } ( X \leqslant a ) = \frac { 7 } { 27 }\)