AQA Further Paper 3 Statistics Specimen — Question 6 9 marks

Exam BoardAQA
ModuleFurther Paper 3 Statistics (Further Paper 3 Statistics)
SessionSpecimen
Marks9
TopicDiscrete Random Variables
TypeExpectation of reciprocals and nonlinear functions

6 The random variable \(T\) can take the value \(T = - 2\) or any value in the range \(0 \leq T < 12\) The distribution of \(T\) is given by \(\mathrm { P } ( T = - 2 ) = c , \mathrm { P } ( 0 \leq T \leq t ) = 225 k - k ( 15 - t ) ^ { 2 }\) 6
    1. Show that \(1 - c = 216 k\)
      [0pt] [3 marks] 6
  1. (ii) Given that \(c = 0.1\), find the value of \(\mathrm { E } ( T )\)
    [0pt] [3 marks]
    6
  2. Show that \(\mathrm { E } ( \sqrt { | T | } ) = \frac { 5 \sqrt { 2 } + 52 \sqrt { 3 } } { 50 }\)
    [0pt] [3 marks]