Expectation of reciprocals and nonlinear functions

Questions asking to find E(1/X), E(√X), or other nonlinear functions of X, often requiring direct calculation from the distribution.

3 questions

AQA S2 2008 January Q5
5 A discrete random variable \(X\) has the probability distribution $$\mathrm { P } ( X = x ) = \left\{ \begin{array} { c l } \frac { x } { 20 } & x = 1,2,3,4,5
\frac { x } { 24 } & x = 6
0 & \text { otherwise } \end{array} \right.$$
  1. Calculate \(\mathrm { P } ( X \geqslant 5 )\).
    1. Show that \(\mathrm { E } \left( \frac { 1 } { X } \right) = \frac { 7 } { 24 }\).
    2. Hence, or otherwise, show that \(\operatorname { Var } \left( \frac { 1 } { X } \right) = 0.036\), correct to three decimal places.
  2. Calculate the mean and the variance of \(A\), the area of rectangles having sides of length \(X + 3\) and \(\frac { 1 } { X }\).
AQA S2 2011 June Q4
4 A discrete random variable \(X\) has the probability distribution $$\mathrm { P } ( X = x ) = \left\{ \begin{array} { c l } \frac { 3 x } { 40 } & x = 1,2,3,4
\frac { x } { 20 } & x = 5
0 & \text { otherwise } \end{array} \right.$$
  1. Calculate \(\mathrm { E } ( X )\).
  2. Show that:
    1. \(\quad \mathrm { E } \left( \frac { 1 } { X } \right) = \frac { 7 } { 20 }\);
      (2 marks)
    2. \(\operatorname { Var } \left( \frac { 1 } { X } \right) = \frac { 7 } { 160 }\).
  3. The discrete random variable \(Y\) is such that \(Y = \frac { 40 } { X }\). Calculate:
    1. \(\mathrm { P } ( Y < 20 )\);
    2. \(\mathrm { P } ( X < 4 \mid Y < 20 )\).
AQA Further Paper 3 Statistics Specimen Q6
9 marks
6 The random variable \(T\) can take the value \(T = - 2\) or any value in the range \(0 \leq T < 12\) The distribution of \(T\) is given by \(\mathrm { P } ( T = - 2 ) = c , \mathrm { P } ( 0 \leq T \leq t ) = 225 k - k ( 15 - t ) ^ { 2 }\) 6
    1. Show that \(1 - c = 216 k\)
      [0pt] [3 marks] 6
  1. (ii) Given that \(c = 0.1\), find the value of \(\mathrm { E } ( T )\)
    [0pt] [3 marks]
    6
  2. Show that \(\mathrm { E } ( \sqrt { | T | } ) = \frac { 5 \sqrt { 2 } + 52 \sqrt { 3 } } { 50 }\)
    [0pt] [3 marks]