| Exam Board | AQA |
| Module | Further Paper 3 Statistics (Further Paper 3 Statistics) |
| Session | Specimen |
| Topic | Continuous Probability Distributions and Random Variables |
| Type | Calculate probability P(X in interval) |
2 The continuous random variable \(Y\) has cumulative distribution function defined by
$$\mathrm { F } ( y ) = \left\{ \begin{array} { c c }
0 & y < 0
\frac { y ^ { 2 } } { 36 } & 0 \leq y \leq 6
1 & y > 6
\end{array} \right.$$
Find the value of \(\mathrm { P } ( Y > 4 )\)
Circle your answer.
\(\frac { 4 } { 9 }\)
\(\frac { 5 } { 9 }\)
\(\frac { 16 } { 27 }\)
\(\frac { 11 } { 27 }\)