OCR MEI Further Numerical Methods 2021 November — Question 3

Exam BoardOCR MEI
ModuleFurther Numerical Methods (Further Numerical Methods)
Year2021
SessionNovember
TopicSign Change & Interval Methods
TypeSecant Method or False Position

3 The method of False Position is used to find a sequence of approximations to the root of an equation. The spreadsheet output showing these approximations, together with some further analysis, is shown below.
CDEFGHIJ
4af(a)b\(\mathrm { f } ( b )\)\(x _ { \text {new } }\)\(\mathrm { f } \left( x _ { \text {new } } \right)\)differenceratio
51-1.8248217.28991.09547-1.80507
61.09547-1.80507217.28991.18097-1.754180.08551
71.18097-1.75418217.28991.25641-1.662460.075440.88229
81.25641-1.66246217.28991.32164-1.527810.065230.86458
91.32164-1.52781217.28991.37672-1.357060.055080.84439
101.37672-1.35706217.28991.42208-1.16420.045360.8236
111.42208-1.1642217.28991.45853-0.966160.036460.80376
121.45853-0.96616217.28991.48719-0.778250.028660.78598
131.48719-0.77825217.2899
14
The formula in cell D5 is \(\quad = \mathrm { SINH } \left( \mathrm { C5 } ^ { \wedge } 2 \right) - \mathrm { C5 } ^ { \wedge } 3 - 2\).
  1. Write down the equation which is being solved. The formula in cell C 6 is \(\quad = \mathrm { IF } ( \mathrm { H } 5 < 0 , \mathrm { G } 5 , \mathrm { C } 5 )\).
  2. Write down a similar formula for cell E6.
  3. Calculate the values which would be displayed in cells G13 and G14 to find further approximations to the root.
  4. Explain what the values in column J tell you about
    • the order of convergence of this sequence of estimates,
    • the speed of convergence of this sequence of estimates.