OCR MEI Further Numerical Methods 2021 November — Question 7 6 marks

Exam BoardOCR MEI
ModuleFurther Numerical Methods (Further Numerical Methods)
Year2021
SessionNovember
Marks6
TopicSign Change & Interval Methods
TypeTrapezium Rule with Accuracy Analysis

7 Sarah uses the trapezium rule to find a sequence of approximations to \(\int _ { 0 } ^ { 1 } \sqrt { \tanh ( x ) } \mathrm { d } x\).
Her spreadsheet output is shown in Fig. 7.1. \begin{table}[h]
\(n\)\(T _ { n }\)differenceratio
10.43634681
20.55806940.121723
40.601998430.0439290.36089
80.617870730.0158720.36132
160.623576010.0057050.35945
320.625617160.0020410.35777
\captionsetup{labelformat=empty} \caption{Fig. 7.1}
\end{table}
  1. Write down the value of \(h\) used to find the approximation 0.62357601 .
  2. Without doing any further calculation, state the value of \(\int _ { 0 } ^ { 1 } \sqrt { \tanh ( x ) } \mathrm { d } x\) as accurately as you
    can, justifying the precision quoted.
  3. Explain what the values in the ratio column tell you about the order of convergence of this sequence of approximations. Sarah carries out further work using the midpoint rule and Simpson’s rule. Her results are shown in Fig. 7.2. \begin{table}[h]
    MNOPQR
    1\(n\)\(T _ { n }\)\(M _ { n }\)\(S _ { 2 n }\)differenceratio
    210.436346810.6797920.5986436
    320.55806940.645927450.616641440.018
    440.601998430.633743040.62316150.006520.362269
    580.617870730.629281290.625477770.002320.355253
    6160.623576010.627658310.626297550.000820.35392
    7320.625617160.62707259
    \captionsetup{labelformat=empty} \caption{Fig. 7.2}
    \end{table}
  4. Write down an efficient spreadsheet formula for calculating \(S _ { 16 }\).
  5. Determine the missing values in row 7.
  6. Use extrapolation to determine the value of \(\int _ { 0 } ^ { 1 } \sqrt { \tanh ( x ) } d x\) as accurately as you can, justifying
    the precision quoted.
    [0pt] [6]