OCR MEI Further Numerical Methods 2021 November — Question 6

Exam BoardOCR MEI
ModuleFurther Numerical Methods (Further Numerical Methods)
Year2021
SessionNovember
TopicFixed Point Iteration

6 The equation \(0.5 \ln x - x ^ { 2 } + x + 1 = 0\) has two roots \(\alpha\) and \(\beta\), such that \(0 < \alpha < 1\) and \(1 < \beta < 2\).
  1. Use the Newton-Raphson method with \(x _ { 0 } = 1\) to obtain \(\beta\) correct to \(\mathbf { 6 }\) decimal places. Fig. 6.1 shows part of the graph of \(y = 0.5 \ln x - x ^ { 2 } + x + 1\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{945883ad-c153-4c51-83d3-978e4c769ed5-06_1112_1156_529_354} \captionsetup{labelformat=empty} \caption{Fig. 6.1}
    \end{figure}
  2. On the copy of Fig. 6.1 in the Printed Answer Booklet, illustrate the Newton-Raphson method working to obtain \(x _ { 1 }\) from \(x _ { 0 } = 1\). Beth is trying to find \(\alpha\) correct to 6 decimal places.
  3. Suggest a reason why she might choose the Newton-Raphson method instead of fixed point iteration. Beth tries to find \(\alpha\) using the Newton-Raphson method with a starting value of \(x _ { 0 } = 0.5\). Her spreadsheet output is shown in Fig. 6.2. \begin{table}[h]
    \(r\)\(\mathrm { x } _ { \mathrm { r } }\)
    00.5
    1- 0.40343
    2\#NUM!
    \captionsetup{labelformat=empty} \caption{Fig. 6.2}
    \end{table}
  4. Explain how the display \#NUM! has arisen in the cell for \(x _ { 2 }\). Beth decides to use the iterative formula $$x _ { n + 1 } = g \left( x _ { n } \right) = \sqrt { 0.5 \ln \left( x _ { n } \right) + x _ { n } + 1 }$$
  5. Determine the outcome when Beth uses this formula with \(x _ { 0 } = 0.5\).
  6. Use the relaxed iteration \(\mathrm { x } _ { \mathrm { n } + 1 } = ( 1 - \lambda ) \mathrm { x } _ { \mathrm { n } } + \lambda \mathrm { g } \left( \mathrm { x } _ { \mathrm { n } } \right)\) with \(\lambda = - 0.041\) and \(x _ { 0 } = 0.5\) to obtain \(\alpha\) correct to \(\mathbf { 6 }\) decimal places.