A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Integration using inverse trig and hyperbolic functions
Q7
AQA FP2 2014 June — Question 7
7 marks
Exam Board
AQA
Module
FP2 (Further Pure Mathematics 2)
Year
2014
Session
June
Marks
7
Topic
Integration using inverse trig and hyperbolic functions
7
Given that \(y = \tan ^ { - 1 } \left( \frac { 1 + x } { 1 - x } \right)\) and \(x \neq 1\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 1 + x ^ { 2 } }\).
[0pt] [4 marks]
Hence, given that \(x < 1\), show that \(\tan ^ { - 1 } \left( \frac { 1 + x } { 1 - x } \right) - \tan ^ { - 1 } x = \frac { \pi } { 4 }\).
[0pt] [3 marks]
This paper
(8 questions)
View full paper
Q1
7
Q2
3
Q3
Q4
Q5
2
Q6
Q7
7
Q8
6