A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Proof by induction
Q3
AQA FP2 2014 June — Question 3
Exam Board
AQA
Module
FP2 (Further Pure Mathematics 2)
Year
2014
Session
June
Topic
Proof by induction
3
Express \(( k + 1 ) ^ { 2 } + 5 ( k + 1 ) + 8\) in the form \(k ^ { 2 } + a k + b\), where \(a\) and \(b\) are constants.
Prove by induction that, for all integers \(n \geqslant 1\), $$\sum _ { r = 1 } ^ { n } r ( r + 1 ) \left( \frac { 1 } { 2 } \right) ^ { r - 1 } = 16 - \left( n ^ { 2 } + 5 n + 8 \right) \left( \frac { 1 } { 2 } \right) ^ { n - 1 }$$
This paper
(8 questions)
View full paper
Q1
7
Q2
3
Q3
Q4
Q5
2
Q6
Q7
7
Q8
6