AQA FP2 2014 June — Question 3

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2014
SessionJune
TopicProof by induction

3
  1. Express \(( k + 1 ) ^ { 2 } + 5 ( k + 1 ) + 8\) in the form \(k ^ { 2 } + a k + b\), where \(a\) and \(b\) are constants.
  2. Prove by induction that, for all integers \(n \geqslant 1\), $$\sum _ { r = 1 } ^ { n } r ( r + 1 ) \left( \frac { 1 } { 2 } \right) ^ { r - 1 } = 16 - \left( n ^ { 2 } + 5 n + 8 \right) \left( \frac { 1 } { 2 } \right) ^ { n - 1 }$$