AQA FP2 2014 June — Question 4

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2014
SessionJune
TopicRoots of polynomials

4 The roots of the equation $$z ^ { 3 } + 2 z ^ { 2 } + 3 z - 4 = 0$$ are \(\alpha , \beta\) and \(\gamma\).
    1. Write down the value of \(\alpha + \beta + \gamma\) and the value of \(\alpha \beta + \beta \gamma + \gamma \alpha\).
    2. Hence show that \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = - 2\).
  1. Find the value of:
    1. \(( \alpha + \beta ) ( \beta + \gamma ) + ( \beta + \gamma ) ( \gamma + \alpha ) + ( \gamma + \alpha ) ( \alpha + \beta )\);
    2. \(( \alpha + \beta ) ( \beta + \gamma ) ( \gamma + \alpha )\).
  2. Find a cubic equation whose roots are \(\alpha + \beta , \beta + \gamma\) and \(\gamma + \alpha\).