AQA FP2 2012 June — Question 5

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2012
SessionJune
TopicIntegration using inverse trig and hyperbolic functions

5 The function f , where \(\mathrm { f } ( x ) = \sec x\), has domain \(0 \leqslant x < \frac { \pi } { 2 }\) and has inverse function \(\mathrm { f } ^ { - 1 }\), where \(\mathrm { f } ^ { - 1 } ( x ) = \sec ^ { - 1 } x\).
  1. Show that $$\sec ^ { - 1 } x = \cos ^ { - 1 } \frac { 1 } { x }$$
  2. Hence show that $$\frac { \mathrm { d } } { \mathrm {~d} x } \left( \sec ^ { - 1 } x \right) = \frac { 1 } { \sqrt { x ^ { 4 } - x ^ { 2 } } }$$