the locus of points for which
$$| z - 2 - 5 \mathrm { i } | = 5$$
the locus of points for which
$$\arg ( z + 2 i ) = \frac { \pi } { 4 }$$
Indicate on your diagram the set of points satisfying both
$$| z - 2 - 5 i | \leqslant 5$$
and
$$\arg ( z + 2 \mathrm { i } ) = \frac { \pi } { 4 }$$
(2 marks)
Use the definitions of \(\cosh \theta\) and \(\sinh \theta\) in terms of \(\mathrm { e } ^ { \theta }\) to show that
$$\cosh x \cosh y - \sinh x \sinh y = \cosh ( x - y )$$
It is given that \(x\) satisfies the equation
$$\cosh ( x - \ln 2 ) = \sinh x$$
Show that \(\tanh x = \frac { 5 } { 7 }\).
Express \(x\) in the form \(\frac { 1 } { 2 } \ln a\).
Show that
$$( r + 1 ) ! - ( r - 1 ) ! = \left( r ^ { 2 } + r - 1 \right) ( r - 1 ) !$$
Hence show that
$$\sum _ { r = 1 } ^ { n } \left( r ^ { 2 } + r - 1 \right) ( r - 1 ) ! = ( n + 2 ) n ! - 2$$
(4 marks)
The cubic equation
$$z ^ { 3 } - 2 z ^ { 2 } + k = 0 \quad ( k \neq 0 )$$
has roots \(\alpha , \beta\) and \(\gamma\).
Write down the values of \(\alpha + \beta + \gamma\) and \(\alpha \beta + \beta \gamma + \gamma \alpha\).
The arc of the curve \(y ^ { 2 } = x ^ { 2 } + 8\) between the points where \(x = 0\) and \(x = 6\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Show that the area \(S\) of the curved surface formed is given by
$$S = 2 \sqrt { 2 } \pi \int _ { 0 } ^ { 6 } \sqrt { x ^ { 2 } + 4 } \mathrm {~d} x$$
By means of the substitution \(x = 2 \sinh \theta\), show that
$$S = \pi \left( 24 \sqrt { 5 } + 4 \sqrt { 2 } \sinh ^ { - 1 } 3 \right)$$
Explain why \(t = \tan \frac { \pi } { 5 }\) is a root of the equation
$$t ^ { 4 } - 10 t ^ { 2 } + 5 = 0$$
and write down the three other roots of this equation in trigonometrical form.
(3 marks)