Given that \(u = \sqrt { 1 - x ^ { 2 } }\), find \(\frac { \mathrm { d } u } { \mathrm {~d} x }\).
Use integration by parts to show that
$$\int _ { 0 } ^ { \frac { \sqrt { 3 } } { 2 } } \sin ^ { - 1 } x \mathrm {~d} x = a \sqrt { 3 } \pi + b$$
where \(a\) and \(b\) are rational numbers.