Sketch on an Argand diagram the locus of points satisfying the equation
$$| z - 4 + 3 \mathrm { i } | = 5$$
Indicate on your diagram the point \(P\) representing \(z _ { 1 }\), where both
$$\left| z _ { 1 } - 4 + 3 \mathrm { i } \right| = 5 \quad \text { and } \quad \arg z _ { 1 } = 0$$
Show that \(( 1 + \mathrm { i } ) ^ { 3 } = 2 \mathrm { i } - 2\).
The cubic equation
$$z ^ { 3 } - ( 5 + \mathrm { i } ) z ^ { 2 } + ( 9 + 4 \mathrm { i } ) z + k ( 1 + \mathrm { i } ) = 0$$
where \(k\) is a real constant, has roots \(\alpha , \beta\) and \(\gamma\).
It is given that \(\alpha = 1 + \mathrm { i }\).
Given that \(u = \sqrt { 1 - x ^ { 2 } }\), find \(\frac { \mathrm { d } u } { \mathrm {~d} x }\).
Use integration by parts to show that
$$\int _ { 0 } ^ { \frac { \sqrt { 3 } } { 2 } } \sin ^ { - 1 } x \mathrm {~d} x = a \sqrt { 3 } \pi + b$$
where \(a\) and \(b\) are rational numbers.
Given that
$$x = \ln ( \sec t + \tan t ) - \sin t$$
show that
$$\frac { \mathrm { d } x } { \mathrm {~d} t } = \sin t \tan t$$
A curve is given parametrically by the equations
$$x = \ln ( \sec t + \tan t ) - \sin t , \quad y = \cos t$$
The length of the arc of the curve between the points where \(t = 0\) and \(t = \frac { \pi } { 3 }\) is denoted by \(s\).
Show that \(s = \ln p\), where \(p\) is an integer.
Given that
$$\mathrm { f } ( k ) = 12 ^ { k } + 2 \times 5 ^ { k - 1 }$$
show that
$$\mathrm { f } ( k + 1 ) - 5 \mathrm { f } ( k ) = a \times 12 ^ { k }$$
where \(a\) is an integer.
Prove by induction that \(12 ^ { n } + 2 \times 5 ^ { n - 1 }\) is divisible by 7 for all integers \(n \geqslant 1\).
Express in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\) :
\(\quad 4 ( 1 + i \sqrt { 3 } )\);
\(4 ( 1 - i \sqrt { 3 } )\).
The complex number \(z\) satisfies the equation
$$\left( z ^ { 3 } - 4 \right) ^ { 2 } = - 48$$
Show that \(z ^ { 3 } = 4 \pm 4 \sqrt { 3 } \mathrm { i }\).
Solve the equation
$$\left( z ^ { 3 } - 4 \right) ^ { 2 } = - 48$$
giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
Illustrate the roots on an Argand diagram.
Explain why the sum of the roots of the equation
$$\left( z ^ { 3 } - 4 \right) ^ { 2 } = - 48$$
is zero.