AQA FP2 2011 January — Question 3

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2011
SessionJanuary
TopicRoots of polynomials

3
  1. Show that \(( 1 + \mathrm { i } ) ^ { 3 } = 2 \mathrm { i } - 2\).
  2. The cubic equation $$z ^ { 3 } - ( 5 + \mathrm { i } ) z ^ { 2 } + ( 9 + 4 \mathrm { i } ) z + k ( 1 + \mathrm { i } ) = 0$$ where \(k\) is a real constant, has roots \(\alpha , \beta\) and \(\gamma\).
    It is given that \(\alpha = 1 + \mathrm { i }\).
    1. Find the value of \(k\).
    2. Show that \(\beta + \gamma = 4\).
    3. Find the values of \(\beta\) and \(\gamma\).