AQA FP1 2013 June — Question 9

Exam BoardAQA
ModuleFP1 (Further Pure Mathematics 1)
Year2013
SessionJune
TopicCurve Sketching
TypeRational functions with parameters

9 A curve has equation $$y = \frac { x ^ { 2 } - 2 x + 1 } { x ^ { 2 } - 2 x - 3 }$$
  1. Find the equations of the three asymptotes of the curve.
    1. Show that if the line \(y = k\) intersects the curve then $$( k - 1 ) x ^ { 2 } - 2 ( k - 1 ) x - ( 3 k + 1 ) = 0$$
    2. Given that the equation \(( k - 1 ) x ^ { 2 } - 2 ( k - 1 ) x - ( 3 k + 1 ) = 0\) has real roots, show that $$k ^ { 2 } - k \geqslant 0$$
    3. Hence show that the curve has only one stationary point and find its coordinates.
      (No credit will be given for solutions based on differentiation.)
  2. Sketch the curve and its asymptotes.