AQA FP1 2013 June — Question 5

Exam BoardAQA
ModuleFP1 (Further Pure Mathematics 1)
Year2013
SessionJune
TopicDifferentiation from First Principles

5
  1. A curve has equation \(y = 2 x ^ { 2 } - 5 x\).
    The point \(P\) on the curve has coordinates \(( 1 , - 3 )\).
    The point \(Q\) on the curve has \(x\)-coordinate \(1 + h\).
    1. Show that the gradient of the line \(P Q\) is \(2 h - 1\).
    2. Explain how the result of part (a)(i) can be used to show that the tangent to the curve at the point \(P\) is parallel to the line \(x + y = 0\).
  2. For the improper integral \(\int _ { 1 } ^ { \infty } x ^ { - 4 } \left( 2 x ^ { 2 } - 5 x \right) \mathrm { d } x\), either show that the integral has a finite value and state its value, or explain why the integral does not have a finite value.