AQA FP1 (Further Pure Mathematics 1) 2013 June

Question 1
View details
1 The equation $$x ^ { 3 } - x ^ { 2 } + 4 x - 900 = 0$$ has exactly one real root, \(\alpha\). Taking \(x _ { 1 } = 10\) as a first approximation to \(\alpha\), use the Newton-Raphson method to find a second approximation, \(x _ { 2 }\), to \(\alpha\). Give your answer to four significant figures.
(3 marks)
\includegraphics[max width=\textwidth, alt={}]{d74d6295-d5b8-46da-8812-c5bf7c7a35f1-02_1659_1709_1048_153}
Question 2
View details
2 The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are defined by $$\mathbf { A } = \left[ \begin{array} { c c } p & 2
4 & p \end{array} \right] \quad \mathbf { B } = \left[ \begin{array} { l l } 3 & 1
2 & 3 \end{array} \right]$$
  1. Find, in terms of \(p\), the matrices:
    1. \(\mathbf { A } - \mathbf { B }\);
    2. AB .
  2. Show that there is a value of \(p\) for which \(\mathbf { A } - \mathbf { B } + \mathbf { A B } = k \mathbf { I }\), where \(k\) is an integer and \(\mathbf { I }\) is the \(2 \times 2\) identity matrix, and state the corresponding value of \(k\).
Question 3
View details
3
  1. Find the general solution, in degrees, of the equation $$\cos \left( 5 x + 40 ^ { \circ } \right) = \cos 65 ^ { \circ }$$
  2. Given that $$\sin \frac { \pi } { 12 } = \frac { \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }$$ express \(\sin \frac { \pi } { 12 }\) in the form \(\left( \cos \frac { \pi } { 4 } \right) ( \cos ( a \pi ) + \cos ( b \pi ) )\), where \(a\) and \(b\) are rational.
    (3 marks)
Question 4
View details
4
  1. It is given that \(z = x + y \mathrm { i }\), where \(x\) and \(y\) are real numbers.
    1. Write down, in terms of \(x\) and \(y\), an expression for \(( z - 2 \mathrm { i } ) ^ { * }\).
    2. Solve the equation $$( z - 2 \mathrm { i } ) ^ { * } = 4 \mathrm { i } z + 3$$ giving your answer in the form \(a + b \mathrm { i }\).
  2. It is given that \(p + q \mathrm { i }\), where \(p\) and \(q\) are real numbers, is a root of the equation \(z ^ { 2 } + 10 \mathrm { i } z - 29 = 0\). Without finding the values of \(p\) and \(q\), state why \(p - q\) i is not a root of the equation \(z ^ { 2 } + 10 \mathrm { i } z - 29 = 0\).
Question 5
View details
5
  1. A curve has equation \(y = 2 x ^ { 2 } - 5 x\).
    The point \(P\) on the curve has coordinates \(( 1 , - 3 )\).
    The point \(Q\) on the curve has \(x\)-coordinate \(1 + h\).
    1. Show that the gradient of the line \(P Q\) is \(2 h - 1\).
    2. Explain how the result of part (a)(i) can be used to show that the tangent to the curve at the point \(P\) is parallel to the line \(x + y = 0\).
  2. For the improper integral \(\int _ { 1 } ^ { \infty } x ^ { - 4 } \left( 2 x ^ { 2 } - 5 x \right) \mathrm { d } x\), either show that the integral has a finite value and state its value, or explain why the integral does not have a finite value.
Question 6
View details
6 The equation $$2 x ^ { 2 } + 3 x - 6 = 0$$ has roots \(\alpha\) and \(\beta\).
  1. Write down the value of \(\alpha + \beta\) and the value of \(\alpha \beta\).
  2. Hence show that \(\alpha ^ { 3 } + \beta ^ { 3 } = - \frac { 135 } { 8 }\).
  3. Find a quadratic equation, with integer coefficients, whose roots are \(\alpha + \frac { \alpha } { \beta ^ { 2 } }\) and \(\beta + \frac { \beta } { \alpha ^ { 2 } }\).
Question 7
View details
7
  1. Show that the equation \(4 x ^ { 3 } - x - 540000 = 0\) has a root, \(\alpha\), in the interval \(51 < \alpha < 52\).
  2. It is given that \(S _ { n } = \sum _ { r = 1 } ^ { n } ( 2 r - 1 ) ^ { 2 }\).
    1. Use the formulae for \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) and \(\sum _ { r = 1 } ^ { n } r\) to show that \(S _ { n } = \frac { n } { 3 } \left( k n ^ { 2 } - 1 \right)\), where \(k\) is an integer to be found.
    2. Hence show that \(6 S _ { n }\) can be written as the product of three consecutive integers.
  3. Find the smallest value of \(N\) for which the sum of the squares of the first \(N\) odd numbers is greater than 180000 .
Question 8
View details
8 The diagram shows two triangles, \(T _ { 1 }\) and \(T _ { 2 }\).
\includegraphics[max width=\textwidth, alt={}, center]{d74d6295-d5b8-46da-8812-c5bf7c7a35f1-09_972_967_358_589}
  1. Find the matrix which represents the stretch that maps triangle \(T _ { 1 }\) onto triangle \(T _ { 2 }\).
  2. The triangle \(T _ { 2 }\) is reflected in the line \(y = \sqrt { 3 } x\) to give a third triangle, \(T _ { 3 }\). Find, using surd forms where appropriate:
    1. the matrix which represents the reflection that maps triangle \(T _ { 2 }\) onto triangle \(T _ { 3 }\);
    2. the matrix which represents the combined transformation that maps triangle \(T _ { 1 }\) onto triangle \(T _ { 3 }\).
      (2 marks)
Question 9
View details
9 A curve has equation $$y = \frac { x ^ { 2 } - 2 x + 1 } { x ^ { 2 } - 2 x - 3 }$$
  1. Find the equations of the three asymptotes of the curve.
    1. Show that if the line \(y = k\) intersects the curve then $$( k - 1 ) x ^ { 2 } - 2 ( k - 1 ) x - ( 3 k + 1 ) = 0$$
    2. Given that the equation \(( k - 1 ) x ^ { 2 } - 2 ( k - 1 ) x - ( 3 k + 1 ) = 0\) has real roots, show that $$k ^ { 2 } - k \geqslant 0$$
    3. Hence show that the curve has only one stationary point and find its coordinates.
      (No credit will be given for solutions based on differentiation.)
  2. Sketch the curve and its asymptotes.