AQA FP1 2013 June — Question 1

Exam BoardAQA
ModuleFP1 (Further Pure Mathematics 1)
Year2013
SessionJune
TopicNewton-Raphson method
TypeNewton-Raphson with derivative given or simple

1 The equation $$x ^ { 3 } - x ^ { 2 } + 4 x - 900 = 0$$ has exactly one real root, \(\alpha\). Taking \(x _ { 1 } = 10\) as a first approximation to \(\alpha\), use the Newton-Raphson method to find a second approximation, \(x _ { 2 }\), to \(\alpha\). Give your answer to four significant figures.
(3 marks)
\includegraphics[max width=\textwidth, alt={}]{d74d6295-d5b8-46da-8812-c5bf7c7a35f1-02_1659_1709_1048_153}