AQA FP1 2009 January — Question 9

Exam BoardAQA
ModuleFP1 (Further Pure Mathematics 1)
Year2009
SessionJanuary
TopicConic sections

9 A hyperbola \(H\) has equation $$x ^ { 2 } - \frac { y ^ { 2 } } { 2 } = 1$$
  1. Find the equations of the two asymptotes of \(H\), giving each answer in the form \(y = m x\).
  2. Draw a sketch of the two asymptotes of \(H\), using roughly equal scales on the two coordinate axes. Using the same axes, sketch the hyperbola \(H\).
    1. Show that, if the line \(y = x + c\) intersects \(H\), the \(x\)-coordinates of the points of intersection must satisfy the equation $$x ^ { 2 } - 2 c x - \left( c ^ { 2 } + 2 \right) = 0$$
    2. Hence show that the line \(y = x + c\) intersects \(H\) in two distinct points, whatever the value of \(c\).
    3. Find, in terms of \(c\), the \(y\)-coordinates of these two points.