AQA FP1 2009 January — Question 4

Exam BoardAQA
ModuleFP1 (Further Pure Mathematics 1)
Year2009
SessionJanuary
TopicSequences and series, recurrence and convergence

4 It is given that $$S _ { n } = \sum _ { r = 1 } ^ { n } \left( 3 r ^ { 2 } - 3 r + 1 \right)$$
  1. Use the formulae for \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) and \(\sum _ { r = 1 } ^ { n } r\) to show that \(S _ { n } = n ^ { 3 }\).
  2. Hence show that \(\sum _ { r = n + 1 } ^ { 2 n } \left( 3 r ^ { 2 } - 3 r + 1 \right) = k n ^ { 3 }\) for some integer \(k\).