4.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5180a4e0-dafe-4595-a517-e3501f7aed40-3_780_1175_242_420}
\captionsetup{labelformat=empty}
\caption{Figure 1}
\end{figure}
A region \(R\) is bounded by the curve \(y ^ { 2 } = 4 a x ( y > 0 )\), the \(x\)-axis and the line \(x = a ( a > 0 )\), as shown in Figure 1. A uniform solid \(S\) of mass \(M\) is formed by rotating \(R\) about the \(x\)-axis through \(360 ^ { \circ }\). Using integration, prove that the moment of inertia of \(S\) about the \(x\)-axis is \(\frac { 4 } { 3 } M a ^ { 2 }\).
(You may assume without proof that the moment of inertia of a uniform disc, of mass \(m\) and radius \(r\), about an axis through its centre perpendicular to its plane is \(\frac { 1 } { 2 } m r ^ { 2 }\).)