2. Two constant forces \(\mathbf { F } _ { 1 }\) and \(\mathbf { F } _ { 2 }\) are the only forces acting on a particle \(P\) of mass 2 kg . The particle is initially at rest at the point \(A\) with position vector \(( - 2 \mathbf { i } - \mathbf { j } - 4 \mathbf { k } ) \mathrm { m }\). Four seconds later, \(P\) is at the point \(B\) with position vector \(( 6 \mathbf { i } - 5 \mathbf { j } + 8 \mathbf { k } ) \mathrm { m }\).
Given that \(\mathbf { F } _ { 1 } = ( 12 \mathbf { i } - 4 \mathbf { j } + 6 \mathbf { k } ) \mathrm { N }\), find
- \(\mathbf { F } _ { 2 }\),
- the work done on \(P\) as it moves from \(A\) to \(B\).