Edexcel M5 (Mechanics 5) 2004 June

Question 1
View details
  1. Three forces \(\mathbf { F } _ { 1 } , \mathbf { F } _ { 2 }\) and \(\mathbf { F } _ { 3 }\) act on a rigid body. \(\mathbf { F } _ { 1 } = ( 12 \mathbf { i } - 4 \mathbf { j } + 6 \mathbf { k } ) \mathrm { N }\) and acts at the point with position vector \(( 2 \mathbf { i } - 3 \mathbf { j } ) \mathrm { m } , \mathbf { F } _ { 2 } = ( - 3 \mathbf { j } + 2 \mathbf { k } ) \mathrm { N }\) and acts at the point with position vector \(( \mathbf { i } + \mathbf { j } + \mathbf { k } ) \mathrm { m }\). The force \(\mathbf { F } _ { 3 }\) acts at the point with position vector \(( 2 \mathbf { i } - \mathbf { k } ) \mathrm { m }\).
Given that this set of forces is equivalent to a couple, find
  1. \(\mathbf { F } _ { 3 }\),
  2. the magnitude of the couple.
Question 2
View details
2. Two constant forces \(\mathbf { F } _ { 1 }\) and \(\mathbf { F } _ { 2 }\) are the only forces acting on a particle \(P\) of mass 2 kg . The particle is initially at rest at the point \(A\) with position vector \(( - 2 \mathbf { i } - \mathbf { j } - 4 \mathbf { k } ) \mathrm { m }\). Four seconds later, \(P\) is at the point \(B\) with position vector \(( 6 \mathbf { i } - 5 \mathbf { j } + 8 \mathbf { k } ) \mathrm { m }\). Given that \(\mathbf { F } _ { 1 } = ( 12 \mathbf { i } - 4 \mathbf { j } + 6 \mathbf { k } ) \mathrm { N }\), find
  1. \(\mathbf { F } _ { 2 }\),
  2. the work done on \(P\) as it moves from \(A\) to \(B\).
Question 3
View details
3. A uniform lamina of mass \(m\) is in the shape of a rectangle \(P Q R S\), where \(P Q = 8 a\) and \(Q R = 6 a\).
  1. Find the moment of inertia of the lamina about the edge \(P Q\). \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{26fef791-e6fb-45a8-89e9-16c4b4a1a4e4-3_336_772_528_642}
    \end{figure} The flap on a letterbox is modelled as such a lamina. The flap is free to rotate about an axis along its horizontal edge \(P Q\), as shown in Fig. 1. The flap is released from rest in a horizontal position. It then swings down into a vertical position.
  2. Show that the angular speed of the flap as it reaches the vertical position is \(\sqrt { \left( \frac { g } { 2 a } \right) }\).
  3. Find the magnitude of the vertical component of the resultant force of the axis \(P Q\) on the flap, as it reaches the vertical position.
Question 4
View details
4. A uniform circular disc, of mass \(m\) and radius \(r\), has a diameter \(A B\). The point \(C\) on \(A B\) is such that \(A C = \frac { 1 } { 2 } r\). The disc can rotate freely in a vertical plane about a horizontal axis through \(C\), perpendicular to the plane of the disc. The disc makes small oscillations in a vertical plane about the position of equilibrium in which \(B\) is below \(A\).
  1. Show that the motion is approximately simple harmonic.
  2. Show that the period of this approximate simple harmonic motion is \(\pi \sqrt { \left( \frac { 6 r } { g } \right) }\). The speed of \(B\) when it is vertically below \(A\) is \(\sqrt { \left( \frac { g r } { 54 } \right) }\). The disc comes to rest when \(C B\) makes an angle \(\alpha\) with the downward vertical.
  3. Find an approximate value of \(\alpha\).
    (3)
Question 5
View details
5. A rocket is launched vertically upwards under gravity from rest at time \(t = 0\). The rocket propels itself upward by ejecting burnt fuel vertically downwards at a constant speed \(u\) relative to the rocket. The initial mass of the rocket, including fuel, is \(M\). At time \(t\), before all the fuel has been used up, the mass of the rocket, including fuel, is \(M ( 1 - k t )\) and the speed of the rocket is \(v\).
  1. Show that \(\frac { \mathrm { d } v } { \mathrm {~d} t } = \frac { k u } { 1 - k t } - g\).
  2. Hence find the speed of the rocket when \(t = \frac { 1 } { 3 k }\).
Question 6
View details
6. A particle \(P\) of mass 2 kg moves in the \(x - y\) plane. At time \(t\) seconds its position vector is \(\mathbf { r }\) metres. When \(t = 0\), the position vector of \(P\) is \(\mathbf { i }\) metres and the velocity of \(P\) is ( \(- \mathbf { i } + \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\). The vector \(\mathbf { r }\) satisfies the differential equation $$\frac { \mathrm { d } ^ { 2 } \mathbf { r } } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} \mathbf { r } } { \mathrm {~d} t } + 2 \mathbf { r } = \mathbf { 0 }$$
  1. Find \(\mathbf { r }\) in terms of \(t\).
  2. Show that the speed of \(P\) at time \(t\) is \(\mathrm { e } ^ { - t } \sqrt { 2 } \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  3. Find, in terms of e, the loss of kinetic energy of \(P\) in the interval \(t = 0\) to \(t = 1\).
Question 7
View details
7. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 2} \includegraphics[alt={},max width=\textwidth]{26fef791-e6fb-45a8-89e9-16c4b4a1a4e4-5_313_1443_317_356}
\end{figure} A body consists of two uniform circular discs, each of mass \(m\) and radius \(a\), with a uniform rod. The centres of the discs are fixed to the ends \(A\) and \(B\) of the rod, which has mass \(3 m\) and length 8a. The discs and the rod are coplanar, as shown in Fig. 2. The body is free to rotate in a vertical plane about a smooth fixed horizontal axis. The axis is perpendicular to the plane of the discs and passes through the point \(O\) of the rod, where \(A O = 3 a\).
  1. Show that the moment of inertia of the body about the axis is \(54 m a ^ { 2 }\). The body is held at rest with \(A B\) horizontal and is then released. When the body has turned through an angle of \(30 ^ { \circ }\), the rod \(A B\) strikes a small fixed smooth peg \(P\) where \(O P = 3 a\). Given that the body rebounds from the peg with its angular speed halved by the impact,
  2. show that the magnitude of the impulse exerted on the body by the peg at the impact is $$9 m \sqrt { \left( \frac { 5 g a } { 6 } \right) } .$$ END