- \hspace{0pt} [In this question the horizontal unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) are due east and due north respectively.]
A ship \(A\) has constant velocity \(( 4 \mathbf { i } + 2 \mathbf { j } ) \mathrm { kmh } ^ { - 1 }\) and a ship \(B\) has constant velocity \(( - \mathbf { i } + 3 \mathbf { j } ) \mathrm { km } \mathrm { h } ^ { - 1 }\). At noon, the position vectors of the ships \(A\) and \(B\) with respect to a fixed origin \(O\) are \(( - 2 \mathbf { i } + \mathbf { j } ) \mathrm { km }\) and \(( 5 \mathbf { i } - 2 \mathbf { j } ) \mathrm { km }\) respectively.
Find
- the time at which the two ships are closest together,
- the length of time for which ship \(A\) is within 2 km of ship \(B\).