2.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{23e6a9ae-bf00-45a3-b462-e18760d9af45-04_912_988_260_470}
\captionsetup{labelformat=empty}
\caption{Figure 1}
\end{figure}
Two smooth uniform spheres \(A\) and \(B\) have masses \(3 m \mathrm {~kg}\) and \(m \mathrm {~kg}\) respectively and equal radii. The spheres are moving on a smooth horizontal surface. Initially, sphere \(A\) has velocity \(( 5 \mathbf { i } - 2 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\) and sphere \(B\) has velocity \(( 3 \mathbf { i } + 4 \mathbf { j } ) \mathrm { ms } ^ { - 1 }\). When the spheres collide, the line joining their centres is parallel to \(\mathbf { j }\), as shown in Figure 1.
The coefficient of restitution between the two spheres is \(e\).
The kinetic energy of sphere \(B\) immediately after the collision is \(85 \%\) of its kinetic energy immediately before the collision.
Find
- the velocity of each sphere immediately after the collision,
- the value of \(e\).