AQA M3 2010 June — Question 6

Exam BoardAQA
ModuleM3 (Mechanics 3)
Year2010
SessionJune
TopicMomentum and Collisions 2

6 Two smooth spheres, \(A\) and \(B\), have equal radii and masses 1 kg and 2 kg respectively. The sphere \(A\) is moving with velocity \(( 2 \mathbf { i } + 3 \mathbf { j } ) \mathrm { ms } ^ { - 1 }\) and the sphere \(B\) is moving with velocity \(( - \mathbf { i } - 2 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\) on the same smooth horizontal surface. The spheres collide when their line of centres is parallel to the unit vector \(\mathbf { i }\), as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{01071eb0-2c48-4028-8cd3-6021ce86d7e5-16_456_1052_721_550}
  1. Briefly state why the components of the velocities of \(A\) and \(B\) parallel to the unit vector \(\mathbf { j }\) are not changed by the collision.
  2. The coefficient of restitution between the spheres is 0.5 . Find the velocities of \(A\) and \(B\) immediately after the collision. \includegraphics[max width=\textwidth, alt={}, center]{01071eb0-2c48-4028-8cd3-6021ce86d7e5-17_2484_1709_223_153}
    \(7 \quad\) A ball is projected from a point \(O\) on a smooth plane which is inclined at an angle of \(35 ^ { \circ }\) above the horizontal. The ball is projected with velocity \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of \(30 ^ { \circ }\) above the plane, as shown in the diagram. The motion of the ball is in a vertical plane containing a line of greatest slope of the inclined plane. The ball strikes the inclined plane at the point \(A\).
    \includegraphics[max width=\textwidth, alt={}, center]{01071eb0-2c48-4028-8cd3-6021ce86d7e5-18_321_838_605_577}
  3. Find the components of the velocity of the ball, parallel and perpendicular to the plane, as it strikes the inclined plane at \(A\).
  4. On striking the plane at \(A\), the ball rebounds. The coefficient of restitution between the plane and the ball is \(\frac { 4 } { 5 }\). Show that the ball next strikes the plane at a point lower down than \(A\).
    \includegraphics[max width=\textwidth, alt={}]{01071eb0-2c48-4028-8cd3-6021ce86d7e5-19_2484_1709_223_153}