AQA M3 2010 June — Question 4

Exam BoardAQA
ModuleM3 (Mechanics 3)
Year2010
SessionJune
TopicVectors 3D & Lines

4 The unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are directed east, north and vertically upwards respectively. At time \(t = 0\), the position vectors of two small aeroplanes, \(A\) and \(B\), relative to a fixed origin \(O\) are \(( - 60 \mathbf { i } + 30 \mathbf { k } ) \mathrm { km }\) and \(( - 40 \mathbf { i } + 10 \mathbf { j } - 10 \mathbf { k } ) \mathrm { km }\) respectively. The aeroplane \(A\) is flying with constant velocity \(( 250 \mathbf { i } + 50 \mathbf { j } - 100 \mathbf { k } ) \mathrm { km } \mathrm { h } ^ { - 1 }\) and the aeroplane \(B\) is flying with constant velocity \(( 200 \mathbf { i } + 25 \mathbf { j } + 50 \mathbf { k } ) \mathrm { km } \mathrm { h } ^ { - 1 }\).
  1. Write down the position vectors of \(A\) and \(B\) at time \(t\) hours.
  2. Show that the position vector of \(A\) relative to \(B\) at time \(t\) hours is \(( ( - 20 + 50 t ) \mathbf { i } + ( - 10 + 25 t ) \mathbf { j } + ( 40 - 150 t ) \mathbf { k } ) \mathrm { km }\).
  3. Show that \(A\) and \(B\) do not collide.
  4. Find the value of \(t\) when \(A\) and \(B\) are closest together.
    \includegraphics[max width=\textwidth, alt={}]{01071eb0-2c48-4028-8cd3-6021ce86d7e5-13_2484_1709_223_153}