AQA S2 2006 January — Question 4

Exam BoardAQA
ModuleS2 (Statistics 2)
Year2006
SessionJanuary
TopicContinuous Uniform Random Variables
TypeFind constant k in PDF

4
  1. A random variable \(X\) has probability density function defined by $$\mathrm { f } ( x ) = \begin{cases} k & a < x < b
    0 & \text { otherwise } \end{cases}$$
    1. Show that \(k = \frac { 1 } { b - a }\).
    2. Prove, using integration, that \(\mathrm { E } ( X ) = \frac { 1 } { 2 } ( a + b )\).
  2. The error, \(X\) grams, made when a shopkeeper weighs out loose sweets can be modelled by a rectangular distribution with the following probability density function: $$f ( x ) = \begin{cases} k & - 2 < x < 4
    0 & \text { otherwise } \end{cases}$$
    1. Write down the value of the mean, \(\mu\), of \(X\).
    2. Evaluate the standard deviation, \(\sigma\), of \(X\).
    3. Hence find \(\mathrm { P } \left( X < \frac { 2 - \mu } { \sigma } \right)\).