Use the trapezium rule with two intervals to estimate the value of
$$\int _ { 0 } ^ { 1 } \frac { 1 } { 6 + 2 \mathrm { e } ^ { x } } \mathrm {~d} x$$
giving your answer correct to 2 decimal places.
Find \(\int \frac { \left( \mathrm { e } ^ { x } - 2 \right) ^ { 2 } } { \mathrm { e } ^ { 2 x } } \mathrm {~d} x\).