Describe a sequence of two geometrical transformations that maps the graph of \(y = \mathrm { e } ^ { x }\) onto the graph of \(y = \mathrm { e } ^ { 2 x - 5 }\).
The normal to the curve \(y = \mathrm { e } ^ { 2 x - 5 }\) at the point \(P \left( 2 , \mathrm { e } ^ { - 1 } \right)\) intersects the \(x\)-axis at the point \(A\) and the \(y\)-axis at the point \(B\).
Show that the area of the triangle \(O A B\) is \(\frac { \left( \mathrm { e } ^ { 2 } + 1 \right) ^ { m } } { \mathrm { e } ^ { n } }\), where \(m\) and \(n\) are integers. [0pt]
[6 marks]