4 Fig. 8 shows parts of the curves \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\), where \(\mathrm { f } ( x ) = \tan x\) and \(\mathrm { g } ( x ) = 1 + \mathrm { f } \left( x - \frac { 1 } { 4 } \pi \right)\).
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{01bdea17-c698-44ae-a45a-7da4de631de4-2_687_888_419_609}
\captionsetup{labelformat=empty}
\caption{Fig. 8}
\end{figure}
- Describe a sequence of two transformations which maps the curve \(y = \mathrm { f } ( x )\) to the curve \(y = \mathrm { g } ( x )\). [4] It can be shown that \(\mathrm { g } ( x ) = \frac { 2 \sin x } { \sin x + \cos x }\).
- Show that \(\mathrm { g } ^ { \prime } ( x ) = \frac { 2 } { ( \sin x + \cos x ) ^ { 2 } }\). Hence verify that the gradient of \(y = \mathrm { g } ( x )\) at the point \(\left( \frac { 1 } { 4 } \pi , 1 \right)\) is the same as that of \(y = \mathrm { f } ( x )\) at the origin.
- By writing \(\tan x = \frac { \sin x } { \cos x }\) and using the substitution \(u = \cos x\), show that \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \mathrm { f } ( x ) \mathrm { d } x = \int _ { \frac { 1 } { \sqrt { 2 } } } ^ { 1 } \frac { 1 } { u } \mathrm {~d} u\). Evaluate this integral exactly.
- Hence find the exact area of the region enclosed by the curve \(y = \mathrm { g } ( x )\), the \(x\)-axis and the lines \(x = \frac { 1 } { 4 } \pi\) and \(x = \frac { 1 } { 2 } \pi\).