Specific function transformation description

Questions involving specific named functions (e.g., y=sin x, y=eˣ, y=ln x, y=tan x, y=sec x) being transformed to another specific expression, requiring description of the transformations.

5 questions

CAIE P1 2020 November Q4
4
\includegraphics[max width=\textwidth, alt={}, center]{fdd6e942-b5bc-4369-8587-6de120459776-05_615_1169_260_488} In the diagram, the lower curve has equation \(y = \cos \theta\). The upper curve shows the result of applying a combination of transformations to \(y = \cos \theta\). Find, in terms of a cosine function, the equation of the upper curve.
OCR MEI C3 Q4
4 marks
4 Fig. 8 shows parts of the curves \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\), where \(\mathrm { f } ( x ) = \tan x\) and \(\mathrm { g } ( x ) = 1 + \mathrm { f } \left( x - \frac { 1 } { 4 } \pi \right)\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{01bdea17-c698-44ae-a45a-7da4de631de4-2_687_888_419_609} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Describe a sequence of two transformations which maps the curve \(y = \mathrm { f } ( x )\) to the curve \(y = \mathrm { g } ( x )\). [4] It can be shown that \(\mathrm { g } ( x ) = \frac { 2 \sin x } { \sin x + \cos x }\).
  2. Show that \(\mathrm { g } ^ { \prime } ( x ) = \frac { 2 } { ( \sin x + \cos x ) ^ { 2 } }\). Hence verify that the gradient of \(y = \mathrm { g } ( x )\) at the point \(\left( \frac { 1 } { 4 } \pi , 1 \right)\) is the same as that of \(y = \mathrm { f } ( x )\) at the origin.
  3. By writing \(\tan x = \frac { \sin x } { \cos x }\) and using the substitution \(u = \cos x\), show that \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \mathrm { f } ( x ) \mathrm { d } x = \int _ { \frac { 1 } { \sqrt { 2 } } } ^ { 1 } \frac { 1 } { u } \mathrm {~d} u\). Evaluate this integral exactly.
  4. Hence find the exact area of the region enclosed by the curve \(y = \mathrm { g } ( x )\), the \(x\)-axis and the lines \(x = \frac { 1 } { 4 } \pi\) and \(x = \frac { 1 } { 2 } \pi\).
OCR MEI AS Paper 1 2023 June Q9
9 The graph shows the function \(\mathrm { y } = \mathrm { e } ^ { 2 \mathrm { x } }\).
\includegraphics[max width=\textwidth, alt={}, center]{1d1e41f3-a834-4230-b6e1-4b0be9450d30-6_595_732_322_242}
  1. Describe the transformation of the graph of \(y = e ^ { x }\) that gives the graph of \(y = e ^ { 2 x }\). A second function is defined by \(\mathrm { y } = \mathrm { k } + \mathrm { e } ^ { \mathrm { x } }\).
  2. A copy of the graph of \(\mathrm { y } = \mathrm { e } ^ { 2 \mathrm { x } }\) is given in the Printed Answer Booklet. Add a sketch of the graph of \(\mathrm { y } = \mathrm { k } + \mathrm { e } ^ { \mathrm { x } }\) in a case where \(k\) is a positive constant.
  3. Show that the two graphs do not intersect for values of \(k\) less than \(- \frac { 1 } { 4 }\).
  4. In the case where \(k = 2\), show that the only point of intersection occurs when \(x = \ln 2\).
AQA C3 2016 June Q4
6 marks
4
  1. Describe a sequence of two geometrical transformations that maps the graph of \(y = \mathrm { e } ^ { x }\) onto the graph of \(y = \mathrm { e } ^ { 2 x - 5 }\).
  2. The normal to the curve \(y = \mathrm { e } ^ { 2 x - 5 }\) at the point \(P \left( 2 , \mathrm { e } ^ { - 1 } \right)\) intersects the \(x\)-axis at the point \(A\) and the \(y\)-axis at the point \(B\). Show that the area of the triangle \(O A B\) is \(\frac { \left( \mathrm { e } ^ { 2 } + 1 \right) ^ { m } } { \mathrm { e } ^ { n } }\), where \(m\) and \(n\) are integers.
    [0pt] [6 marks]
SPS SPS FM 2023 October Q3
3.
  1. Sketch the curve \(y = - \frac { 1 } { x }\).
  2. The curve \(y = - \frac { 1 } { x }\) is translated by 2 units parallel to the \(x\)-axis in the positive direction. State the equation of the transformed curve.
  3. Describe a transformation that transforms the curve \(y = - \frac { 1 } { x }\) to the curve \(y = - \frac { 1 } { 3 x }\).
    [0pt] [BLANK PAGE]