AQA C3 2016 June — Question 7 6 marks

Exam BoardAQA
ModuleC3 (Core Mathematics 3)
Year2016
SessionJune
Marks6
TopicDifferentiating Transcendental Functions

7
  1. By writing \(\sec x = ( \cos x ) ^ { - 1 }\), use the chain rule to show that, if \(y = \sec x\), then $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \sec x \tan x$$
  2. The function f is defined by $$\mathrm { f } ( x ) = 2 \tan x - 3 \sec x , \text { for } 0 < x < \frac { \pi } { 2 }$$ Find the value of the \(y\)-coordinate of the stationary point of the graph of \(y = \mathrm { f } ( x )\), giving your answer in the form \(p \sqrt { q }\), where \(p\) and \(q\) are integers.
    [0pt] [6 marks]