AQA C3 (Core Mathematics 3) 2016 June

Question 1
View details
1
  1. Given that \(y = ( 4 x + 1 ) ^ { 3 } \sin 2 x\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Given that \(y = \frac { 2 x ^ { 2 } + 3 } { 3 x ^ { 2 } + 4 }\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { p x } { \left( 3 x ^ { 2 } + 4 \right) ^ { 2 } }\), where \(p\) is a constant.
  3. Given that \(y = \ln \left( \frac { 2 x ^ { 2 } + 3 } { 3 x ^ { 2 } + 4 } \right)\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
Question 2
View details
2 The curve with equation \(y = x ^ { x }\), where \(x > 0\), intersects the line \(y = 5\) at a single point, where \(x = \alpha\).
  1. Show that \(\alpha\) lies between 2 and 3 .
  2. Show that the equation \(x ^ { x } = 5\) can be rearranged into the form $$x = \mathrm { e } ^ { \left( \frac { \ln 5 } { x } \right) }$$
  3. Use the iterative formula $$x _ { n + 1 } = \mathrm { e } ^ { \left( \frac { \ln 5 } { x _ { n } } \right) }$$ with \(x _ { 1 } = 2\) to find the values of \(x _ { 2 }\) and \(x _ { 3 }\), giving your answers to three decimal places.
    1. Use Simpson's rule with 7 ordinates ( 6 strips) to find an approximation to $$\int _ { 0.5 } ^ { 1.7 } \left( 5 - x ^ { x } \right) \mathrm { d } x$$ giving your answer to three significant figures.
    2. Hence find an approximation to \(\int _ { 0.5 } ^ { 1.7 } x ^ { x } \mathrm {~d} x\).
Question 3 5 marks
View details
3 Solve $$x ^ { 2 } \geqslant | 5 x - 6 |$$ [5 marks]
Question 4 6 marks
View details
4
  1. Describe a sequence of two geometrical transformations that maps the graph of \(y = \mathrm { e } ^ { x }\) onto the graph of \(y = \mathrm { e } ^ { 2 x - 5 }\).
  2. The normal to the curve \(y = \mathrm { e } ^ { 2 x - 5 }\) at the point \(P \left( 2 , \mathrm { e } ^ { - 1 } \right)\) intersects the \(x\)-axis at the point \(A\) and the \(y\)-axis at the point \(B\). Show that the area of the triangle \(O A B\) is \(\frac { \left( \mathrm { e } ^ { 2 } + 1 \right) ^ { m } } { \mathrm { e } ^ { n } }\), where \(m\) and \(n\) are integers.
    [0pt] [6 marks]
Question 5
View details
5 The function f is defined by $$\mathrm { f } ( x ) = 16 x - \mathrm { e } ^ { 2 x } , \text { for all real } x$$ The graph of \(y = \mathrm { f } ( x )\) is sketched below.
\includegraphics[max width=\textwidth, alt={}, center]{bf427498-f1ee-4167-a6f2-ddaa2ff5ef81-12_789_1349_534_347}
  1. Find the range of f.
  2. The composite function fg is defined by $$\operatorname { fg } ( x ) = \frac { 16 } { x } - \mathrm { e } ^ { \frac { 2 } { x } } , \text { for real } x , x \neq 0$$ Find an expression for \(\operatorname { gg } ( x )\).
Question 6 7 marks
View details
6
  1. Use integration by parts to find \(\int \frac { \ln ( 3 x ) } { x ^ { 2 } } \mathrm {~d} x\).
  2. The region bounded by the curve \(y = \frac { \ln ( 3 x ) } { x }\), the \(x\)-axis from \(\frac { 1 } { 3 }\) to 1 , and the line \(x = 1\) is rotated through \(2 \pi\) radians about the \(x\)-axis to form a solid. Find the exact value of the volume of the solid generated.
    [0pt] [7 marks]
Question 7 6 marks
View details
7
  1. By writing \(\sec x = ( \cos x ) ^ { - 1 }\), use the chain rule to show that, if \(y = \sec x\), then $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \sec x \tan x$$
  2. The function f is defined by $$\mathrm { f } ( x ) = 2 \tan x - 3 \sec x , \text { for } 0 < x < \frac { \pi } { 2 }$$ Find the value of the \(y\)-coordinate of the stationary point of the graph of \(y = \mathrm { f } ( x )\), giving your answer in the form \(p \sqrt { q }\), where \(p\) and \(q\) are integers.
    [0pt] [6 marks]
Question 8
View details
8 Use the substitution \(u = 4 x - 1\) to find the exact value of $$\int _ { \frac { 1 } { 4 } } ^ { \frac { 1 } { 2 } } ( 5 - 2 x ) ( 4 x - 1 ) ^ { \frac { 1 } { 3 } } \mathrm {~d} x$$
\includegraphics[max width=\textwidth, alt={}]{bf427498-f1ee-4167-a6f2-ddaa2ff5ef81-18_2104_1712_603_153}
Question 9 3 marks
View details
9
  1. It is given that \(\sec x - \tan x = - 5\).
    1. Show that \(\sec x + \tan x = - 0.2\).
    2. Hence find the exact value of \(\cos x\).
  2. Hence solve the equation $$\sec \left( 2 x - 70 ^ { \circ } \right) - \tan \left( 2 x - 70 ^ { \circ } \right) = - 5$$ giving all values of \(x\), to one decimal place, in the interval \(- 90 ^ { \circ } \leqslant x \leqslant 90 ^ { \circ }\).
    [0pt] [3 marks] \section*{DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED}