3 A curve is defined for \(0 \leqslant x \leqslant \frac { \pi } { 4 }\) by the equation \(y = x \cos 2 x\), and is sketched below.
\includegraphics[max width=\textwidth, alt={}, center]{6ce5aa0d-0a73-4bc4-aabc-314c0434e4f5-3_757_878_402_559}
- Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
- The point \(A\), where \(x = \alpha\), on the curve is a stationary point.
- Show that \(1 - 2 \alpha \tan 2 \alpha = 0\).
- Show that \(0.4 < \alpha < 0.5\).
- Show that the equation \(1 - 2 x \tan 2 x = 0\) can be rearranged to become \(x = \frac { 1 } { 2 } \tan ^ { - 1 } \left( \frac { 1 } { 2 x } \right)\).
- Use the iteration \(x _ { n + 1 } = \frac { 1 } { 2 } \tan ^ { - 1 } \left( \frac { 1 } { 2 x _ { n } } \right)\) with \(x _ { 1 } = 0.4\) to find \(x _ { 3 }\), giving your answer to two significant figures.
- Use integration by parts to find \(\int _ { 0 } ^ { 0.5 } x \cos 2 x \mathrm {~d} x\), giving your answer to three significant figures.