AQA C3 (Core Mathematics 3) 2008 June

Question 1
View details
1 Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) when:
  1. \(y = ( 3 x + 1 ) ^ { 5 }\);
  2. \(y = \ln ( 3 x + 1 )\);
  3. \(y = ( 3 x + 1 ) ^ { 5 } \ln ( 3 x + 1 )\).
Question 2
View details
2
  1. Solve the equation \(\sec x = 3\), giving the values of \(x\) in radians to two decimal places in the interval \(0 \leqslant x < 2 \pi\).
  2. Show that the equation \(\tan ^ { 2 } x = 2 \sec x + 2\) can be written as \(\sec ^ { 2 } x - 2 \sec x - 3 = 0\).
  3. Solve the equation \(\tan ^ { 2 } x = 2 \sec x + 2\), giving the values of \(x\) in radians to two decimal places in the interval \(0 \leqslant x < 2 \pi\).
Question 3
View details
3 A curve is defined for \(0 \leqslant x \leqslant \frac { \pi } { 4 }\) by the equation \(y = x \cos 2 x\), and is sketched below.
\includegraphics[max width=\textwidth, alt={}, center]{6ce5aa0d-0a73-4bc4-aabc-314c0434e4f5-3_757_878_402_559}
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. The point \(A\), where \(x = \alpha\), on the curve is a stationary point.
    1. Show that \(1 - 2 \alpha \tan 2 \alpha = 0\).
    2. Show that \(0.4 < \alpha < 0.5\).
    3. Show that the equation \(1 - 2 x \tan 2 x = 0\) can be rearranged to become \(x = \frac { 1 } { 2 } \tan ^ { - 1 } \left( \frac { 1 } { 2 x } \right)\).
    4. Use the iteration \(x _ { n + 1 } = \frac { 1 } { 2 } \tan ^ { - 1 } \left( \frac { 1 } { 2 x _ { n } } \right)\) with \(x _ { 1 } = 0.4\) to find \(x _ { 3 }\), giving your answer to two significant figures.
  3. Use integration by parts to find \(\int _ { 0 } ^ { 0.5 } x \cos 2 x \mathrm {~d} x\), giving your answer to three significant figures.
Question 4
View details
4 The functions \(f\) and \(g\) are defined with their respective domains by $$\begin{array} { l l } \mathrm { f } ( x ) = x ^ { 2 } , & \text { for all real values of } x
\mathrm {~g} ( x ) = \frac { 1 } { 2 x - 3 } , & \text { for real values of } x , x \neq \frac { 3 } { 2 } \end{array}$$
  1. State the range of f.
    1. The inverse of g is \(\mathrm { g } ^ { - 1 }\). Find \(\mathrm { g } ^ { - 1 } ( x )\).
    2. State the range of \(\mathrm { g } ^ { - 1 }\).
  2. Solve the equation \(\operatorname { fg } ( x ) = 9\).
Question 5
View details
5
  1. The diagram shows part of the curve with equation \(y = \mathrm { f } ( x )\). The curve crosses the \(x\)-axis at the point \(( a , 0 )\) and the \(y\)-axis at the point \(( 0 , - b )\).
    \includegraphics[max width=\textwidth, alt={}, center]{6ce5aa0d-0a73-4bc4-aabc-314c0434e4f5-4_569_853_1206_589} On separate diagrams, sketch the curves with the following equations. On each diagram, indicate, in terms of \(a\) or \(b\), the coordinates of the points where the curve crosses the coordinate axes.
    1. \(y = | \mathrm { f } ( x ) |\).
    2. \(\quad y = 2 \mathrm { f } ( x )\).
    1. Describe a sequence of geometrical transformations that maps the graph of \(y = \ln x\) onto the graph of \(y = 4 \ln ( x + 1 ) - 2\).
    2. Find the exact values of the coordinates of the points where the graph of \(y = 4 \ln ( x + 1 ) - 2\) crosses the coordinate axes.
Question 6
View details
6 The diagram shows the curve with equation \(y = \left( \mathrm { e } ^ { 3 x } + 1 \right) ^ { \frac { 1 } { 2 } }\) for \(x \geqslant 0\).
\includegraphics[max width=\textwidth, alt={}, center]{6ce5aa0d-0a73-4bc4-aabc-314c0434e4f5-5_483_611_402_717}
  1. Find the gradient of the curve \(y = \left( \mathrm { e } ^ { 3 x } + 1 \right) ^ { \frac { 1 } { 2 } }\) at the point where \(x = \ln 2\).
  2. Use the mid-ordinate rule with four strips to find an estimate for \(\int _ { 0 } ^ { 2 } \left( \mathrm { e } ^ { 3 x } + 1 \right) ^ { \frac { 1 } { 2 } } \mathrm {~d} x\), giving your answer to three significant figures.
  3. The shaded region \(R\) is bounded by the curve, the lines \(x = 0 , x = 2\) and the \(x\)-axis. Find the exact value of the volume of the solid generated when the region \(R\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis.
Question 7
View details
7
  1. Given that \(y = \frac { \sin \theta } { \cos \theta }\), use the quotient rule to show that \(\frac { \mathrm { d } y } { \mathrm {~d} \theta } = \sec ^ { 2 } \theta\).
  2. Given that \(x = \sin \theta\), show that \(\frac { x } { \sqrt { 1 - x ^ { 2 } } } = \tan \theta\).
  3. Use the substitution \(x = \sin \theta\) to find \(\int \frac { 1 } { \left( 1 - x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } } \mathrm {~d} x\), giving your answer in terms of \(x\).