AQA C3 (Core Mathematics 3) 2006 June

Question 1
View details
1 The curve \(y = x ^ { 3 } - x - 7\) intersects the \(x\)-axis at the point where \(x = \alpha\).
  1. Show that \(\alpha\) lies between 2.0 and 2.1.
  2. Show that the equation \(x ^ { 3 } - x - 7 = 0\) can be rearranged in the form \(x = \sqrt [ 3 ] { x + 7 }\).
  3. Use the iteration \(x _ { n + 1 } = \sqrt [ 3 ] { x _ { n } + 7 }\) with \(x _ { 1 } = 2\) to find the values of \(x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\), giving your answers to three significant figures.
Question 2
View details
2
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) when \(y = ( 3 x - 1 ) ^ { 10 }\).
  2. Use the substitution \(u = 2 x + 1\) to find \(\int x ( 2 x + 1 ) ^ { 8 } \mathrm {~d} x\), giving your answer in terms of \(x\).
Question 3
View details
3
  1. Solve the equation \(\sec x = 5\), giving all the values of \(x\) in the interval \(0 \leqslant x \leqslant 2 \pi\) in radians to two decimal places.
  2. Show that the equation \(\tan ^ { 2 } x = 3 \sec x + 9\) can be written as $$\sec ^ { 2 } x - 3 \sec x - 10 = 0$$
  3. Solve the equation \(\tan ^ { 2 } x = 3 \sec x + 9\), giving all the values of \(x\) in the interval \(0 \leqslant x \leqslant 2 \pi\) in radians to two decimal places.
Question 4
View details
4
  1. Sketch and label on the same set of axes the graphs of:
    1. \(y = | x |\);
    2. \(y = | 2 x - 4 |\).
    1. Solve the equation \(| x | = | 2 x - 4 |\).
    2. Hence, or otherwise, solve the inequality \(| x | > | 2 x - 4 |\).
Question 5
View details
5
  1. A curve has equation \(y = \mathrm { e } ^ { 2 x } - 10 \mathrm { e } ^ { x } + 12 x\).
    1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
      (2 marks)
    2. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
      (1 mark)
  2. The points \(P\) and \(Q\) are the stationary points of the curve.
    1. Show that the \(x\)-coordinates of \(P\) and \(Q\) are given by the solutions of the equation $$\mathrm { e } ^ { 2 x } - 5 \mathrm { e } ^ { x } + 6 = 0$$ (1 mark)
    2. By using the substitution \(z = \mathrm { e } ^ { x }\), or otherwise, show that the \(x\)-coordinates of \(P\) and \(Q\) are \(\ln 2\) and \(\ln 3\).
    3. Find the \(y\)-coordinates of \(P\) and \(Q\), giving each of your answers in the form \(m + 12 \ln n\), where \(m\) and \(n\) are integers.
    4. Using the answer to part (a)(ii), determine the nature of each stationary point.
Question 6
View details
6
  1. Use the mid-ordinate rule with four strips to find an estimate for \(\int _ { 1 } ^ { 5 } \ln x \mathrm {~d} x\), giving your answer to three significant figures.
    1. Given that \(y = x \ln x\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
    2. Hence, or otherwise, find \(\int \ln x \mathrm {~d} x\).
    3. Find the exact value of \(\int _ { 1 } ^ { 5 } \ln x \mathrm {~d} x\).
Question 7
View details
7
  1. Given that \(z = \frac { \sin x } { \cos x }\), use the quotient rule to show that \(\frac { \mathrm { d } z } { \mathrm {~d} x } = \sec ^ { 2 } x\).
  2. Sketch the curve with equation \(y = \sec x\) for \(- \frac { \pi } { 2 } < x < \frac { \pi } { 2 }\).
  3. The region \(R\) is bounded by the curve \(y = \sec x\), the \(x\)-axis and the lines \(x = 0\) and \(x = 1\). Find the volume of the solid formed when \(R\) is rotated through \(2 \pi\) radians about the \(x\)-axis, giving your answer to three significant figures.
Question 8
View details
8 A function f is defined by \(\mathrm { f } ( x ) = 2 \mathrm { e } ^ { 3 x } - 1\) for all real values of \(x\).
  1. Find the range of f.
  2. Show that \(\mathrm { f } ^ { - 1 } ( x ) = \frac { 1 } { 3 } \ln \left( \frac { x + 1 } { 2 } \right)\).
  3. Find the gradient of the curve \(y = \mathrm { f } ^ { - 1 } ( x )\) when \(x = 0\).
Question 9
View details
9 The diagram shows the curve with equation \(y = \sin ^ { - 1 } 2 x\), where \(- \frac { 1 } { 2 } \leqslant x \leqslant \frac { 1 } { 2 }\).
\includegraphics[max width=\textwidth, alt={}, center]{0ab0e757-270b-4c15-9202-9df2f02dddf3-4_790_752_906_644}
  1. Find the \(y\)-coordinate of the point \(A\), where \(x = \frac { 1 } { 2 }\).
    1. Given that \(y = \sin ^ { - 1 } 2 x\), show that \(x = \frac { 1 } { 2 } \sin y\).
    2. Given that \(x = \frac { 1 } { 2 } \sin y\), find \(\frac { \mathrm { d } x } { \mathrm {~d} y }\) in terms of \(y\).
  2. Using the answers to part (b) and a suitable trigonometrical identity, show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 } { \sqrt { 1 - 4 x ^ { 2 } } }$$