AQA C3 2011 January — Question 7

Exam BoardAQA
ModuleC3 (Core Mathematics 3)
Year2011
SessionJanuary
TopicReciprocal Trig & Identities

7
  1. Solve the equation \(\sec x = - 5\), giving all values of \(x\) in radians to two decimal places in the interval \(0 < x < 2 \pi\).
  2. Show that the equation $$\frac { \operatorname { cosec } x } { 1 + \operatorname { cosec } x } - \frac { \operatorname { cosec } x } { 1 - \operatorname { cosec } x } = 50$$ can be written in the form $$\sec ^ { 2 } x = 25$$
  3. Hence, or otherwise, solve the equation $$\frac { \operatorname { cosec } x } { 1 + \operatorname { cosec } x } - \frac { \operatorname { cosec } x } { 1 - \operatorname { cosec } x } = 50$$ giving all values of \(x\) in radians to two decimal places in the interval \(0 < x < 2 \pi\).
    (3 marks)