4 The functions f and g are defined with their respective domains by
$$\begin{array} { l l }
\mathrm { f } ( x ) = 3 \cos \frac { 1 } { 2 } x , & \text { for } 0 \leqslant x \leqslant 2 \pi
\mathrm {~g} ( x ) = | x | , & \text { for all real values of } x
\end{array}$$
- Find the range of f .
- The inverse of f is \(\mathrm { f } ^ { - 1 }\).
- Find \(\mathrm { f } ^ { - 1 } ( x )\).
- Solve the equation \(\mathrm { f } ^ { - 1 } ( x ) = 1\), giving your answer in an exact form.
- Write down an expression for \(\mathrm { gf } ( x )\).
- Sketch the graph of \(y = \operatorname { gf } ( x )\) for \(0 \leqslant x \leqslant 2 \pi\).
- Describe a sequence of two geometrical transformations that maps the graph of \(y = \cos x\) onto the graph of \(y = 3 \cos \frac { 1 } { 2 } x\).