AQA C3 2011 January — Question 4

Exam BoardAQA
ModuleC3 (Core Mathematics 3)
Year2011
SessionJanuary
TopicComposite & Inverse Functions

4 The functions f and g are defined with their respective domains by $$\begin{array} { l l } \mathrm { f } ( x ) = 3 \cos \frac { 1 } { 2 } x , & \text { for } 0 \leqslant x \leqslant 2 \pi
\mathrm {~g} ( x ) = | x | , & \text { for all real values of } x \end{array}$$
  1. Find the range of f .
  2. The inverse of f is \(\mathrm { f } ^ { - 1 }\).
    1. Find \(\mathrm { f } ^ { - 1 } ( x )\).
    2. Solve the equation \(\mathrm { f } ^ { - 1 } ( x ) = 1\), giving your answer in an exact form.
    1. Write down an expression for \(\mathrm { gf } ( x )\).
    2. Sketch the graph of \(y = \operatorname { gf } ( x )\) for \(0 \leqslant x \leqslant 2 \pi\).
  3. Describe a sequence of two geometrical transformations that maps the graph of \(y = \cos x\) onto the graph of \(y = 3 \cos \frac { 1 } { 2 } x\).